Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558047

RESUMO

The action of wind and waves has a significant effect on the ship's roll, which can be a source of chaos and even capsize. The influence of random wave excitation is considered in order to investigate complex dynamic behavior by analytical and numerical methods. Chaotic rolling motions are theoretically studied in detail by means of the relevant Melnikov method with or without noise excitation. Numerical simulations are used to verify and analyze the appropriate parameter excitation and noise conditions. The results show that by changing the parameters of the excitation amplitude or the noise intensity, chaos can be induced or suppressed.

2.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079650

RESUMO

Chaos is an important dynamic feature, which generally occurs in deterministic and stochastic nonlinear systems and is an inherent characteristic that is ubiquitous. Many difficulties have been solved and new research perspectives have been provided in many fields. The control of chaos is another problem that has been studied. In recent years, a recurrent neural network has emerged, which is widely used to solve many problems in nonlinear dynamics and has fast and accurate computational speed. In this paper, we employ reservoir computing to control chaos in dynamic systems. The results show that the reservoir calculation algorithm with a control term can control the chaotic phenomenon in a dynamic system. Meanwhile, the method is applicable to dynamic systems with random noise. In addition, we investigate the problem of different values for neurons and leakage rates in the algorithm. The findings indicate that the performance of machine learning techniques can be improved by appropriately constructing neural networks.

3.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154041

RESUMO

This study investigates the emergence of extreme events in two different coupled systems: the FitzHugh-Nagumo neuron model and the forced Liénard system, both based on time-varying interactions. The time-varying coupling function between the systems determines the duration and frequency of their interaction. Extreme events in the coupled system arise as a result of the influence of time-varying interactions within various parameter regions. We specifically focus on elucidating how the transition point between extreme events and regular events shifts in response to the duration of interaction time between the systems. By selecting the appropriate interaction time, we can effectively mitigate extreme events, which is highly advantageous for controlling undesired fluctuations in engineering applications. Furthermore, we extend our investigation to networks of oscillators, where the interactions among network elements are also time dependent. The proposed approach for coupled systems holds wide applicability to oscillator networks.

4.
Sci Rep ; 13(1): 20740, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007582

RESUMO

A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.


Assuntos
Modelos Biológicos , Simulação por Computador , Método de Monte Carlo , Dinâmica Populacional
5.
Phys Rev E ; 108(2-1): 024215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723775

RESUMO

How do higher-order interactions influence the dynamical landscape of a network of the second-order phase oscillators? We address this question using three coupled Kuramoto phase oscillators with inertia under pairwise and higher-order interactions, in search of various collective states, and new states, if any, that show marginal presence or absence under pairwise interactions. We explore this small network for varying phase lag in the coupling and over a range of negative to positive coupling strength of pairwise as well as higher-order or group interactions. In the extended coupling parameter plane of the network we record several well-known states such as synchronization, frequency chimera states, and rotating waves that appear with distinct boundaries. In the parameter space, we also find states generated by the influence of higher-order interactions: The 2+1 antipodal point and the 2+1 phase-locked states. Our results demonstrate the importantance of the choices of the phase lag and the sign of the higher-order coupling strength for the emergent dynamics of the network. We provide analytical support to our numerical results.

6.
Opt Express ; 31(14): 22817-22836, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475384

RESUMO

In this study, we report a rich variety of large-intensity pulses exhibited by a Zeeman laser model. The instabilities in the system occur via three different dynamical processes, such as quasiperiodic intermittency, Pomeau-Manneville intermittency, and the breakdown of quasiperiodic motion to chaos followed by an interior crisis. This Zeeman laser model is more capable of exploring the major possible types of instabilities when changing a specific system's parameter in a particular range. We exemplified distinct dynamical transitions of the Zeeman laser model. The statistical measures reveal the appearance of the low probability of large-intensity pulses above the qualifier threshold value. Moreover, they seem to follow an exponential decay that shows a Poisson-like distribution. The impact of noise and time delay effects have been analyzed near the transition point of the system.

7.
Chaos ; 33(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342021

RESUMO

In this paper, we investigate the complex dynamics of rotating pendula arranged into a simple mechanical scheme. Three nodes forming the small network are coupled via the horizontally oscillating beam (the global coupling structure) and the springs (the local coupling), which extends the research performed previously for similar models. The pendula rotate in different directions, and depending on the distribution of the latter ones, various types of behaviors of the system can be observed. We determine the regions of the existence and co-existence of particular solutions using both the classical method of bifurcations, as well as a modern sample-based approach based on the concept of basin stability. Various types of states are presented and discussed, including synchronization patterns, coherent dynamics, and irregular motion. We uncover new schemes of solutions, showing that both rotations and oscillations can co-exist for various pendula, arranged within one common system. Our analysis includes the investigations of the basins of attraction of different dynamical patterns, as well as the study on the properties of the observed states, along with the examination of the influence of system's parameters on their behavior. We show that the model can respond in spontaneous ways and uncover unpredicted irregularities occurring for the states. Our study exhibits that the inclusion of the local coupling structure can induce complex, chimeric dynamics of the system, leading to new co-existing patterns for coupled mechanical nodes.

8.
Chaos ; 33(2): 023128, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859208

RESUMO

A discontinuous transition to hyperchaos is observed at discrete critical parameters in the Zeeman laser model for three well known nonlinear sources of instabilities, namely, quasiperiodic breakdown to chaos followed by interior crisis, quasiperiodic intermittency, and Pomeau-Manneville intermittency. Hyperchaos appears with a sudden expansion of the attractor of the system at a critical parameter for each case and it coincides with triggering of occasional and recurrent large-intensity pulses. The transition to hyperchaos from a periodic orbit via Pomeau-Manneville intermittency shows hysteresis at the critical point, while no hysteresis is recorded during the other two processes. The recurrent large-intensity pulses show characteristic features of extremes with their height larger than a threshold and the probability of a rare occurrence. The phenomenon is robust to weak noise although the critical parameter of transition to hyperchaos shifts with noise strength. This phenomenon appears as common in many low dimensional systems as reported earlier by Chowdhury et al. [Phys. Rep. 966, 1-52 (2022)], there the emergent large-intensity events or extreme events dynamics have been recognized simply as chaotic in nature although the temporal dynamics shows occasional large deviations from the original chaotic state in many examples. We need a new metric, in the future, that would be able to classify such significantly different dynamics and distinguish from chaos.

9.
Chaos ; 33(1): 011104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725642

RESUMO

Dynamical stability of the synchronous regime remains a challenging problem for secure functioning of power grids. Based on the symmetric circular model [Hellmann et al., Nat. Commun. 11, 592 (2020)], we demonstrate that the grid stability can be destroyed by elementary violations (motifs) of the network architecture, such as cutting a connection between any two nodes or removing a generator or a consumer. We describe the mechanism for the cascading failure in each of the damaging case and show that the desynchronization starts with the frequency deviation of the neighboring grid elements followed by the cascading splitting of the others, distant elements, and ending eventually in the bi-modal or a partially desynchronized state. Our findings reveal that symmetric topology underlines stability of the power grids, while local damaging can cause a fatal blackout.

10.
Chaos ; 32(8): 081106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049939

RESUMO

Hyperchaos is distinguished from chaos by the presence of at least two positive Lyapunov exponents instead of just one in dynamical systems. A general scenario is presented here that shows emergence of hyperchaos with a sudden large expansion of the attractor of continuous dynamical systems at a critical parameter when the temporal dynamics shows intermittent large-amplitude spiking or bursting events. The distribution of local maxima of the temporal dynamics is non-Gaussian with a tail, confirming a rare occurrence of the large-amplitude events. We exemplify our results on the sudden emergence of hyperchaos in three paradigmatic models, namely, a coupled Hindmarsh-Rose model, three coupled Duffing oscillators, and a hyperchaotic model.


Assuntos
Dinâmica não Linear
11.
Chaos ; 32(12): 121103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587354

RESUMO

The role of topological heterogeneity in the origin of extreme events in a network is investigated here. The dynamics of the oscillators associated with the nodes are assumed to be identical and influenced by mean-field repulsive interactions. An interplay of topological heterogeneity and the repulsive interaction between the dynamical units of the network triggers extreme events in the nodes when each node succumbs to such events for discretely different ranges of repulsive coupling. A high degree node is vulnerable to weaker repulsive interactions, while a low degree node is susceptible to stronger interactions. As a result, the formation of extreme events changes position with increasing strength of repulsive interaction from high to low degree nodes. Extreme events at any node are identified with the appearance of occasional large-amplitude events (amplitude of the temporal dynamics) that are larger than a threshold height and rare in occurrence, which we confirm by estimating the probability distribution of all events. Extreme events appear at any oscillator near the boundary of transition from rotation to libration at a critical value of the repulsive coupling strength. To explore the phenomenon, a paradigmatic second-order phase model is used to represent the dynamics of the oscillator associated with each node. We make an annealed network approximation to reduce our original model and, thereby, confirm the dual role of the repulsive interaction and the degree of a node in the origin of extreme events in any oscillator associated with a node.

12.
Chaos ; 32(12): 121101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587356

RESUMO

We study the extreme transient dynamics of four self-excited pendula coupled via the movable beam. A slight difference in the pendula lengths induces the appearance of traveling phase behavior, within which the oscillators synchronize, but the phases between the nodes change in time. We discuss various scenarios of traveling states (involving different pendula) and their properties, comparing them with classical synchronization patterns of phase-locking. The research investigates the problem of transient dynamics preceding the stabilization of the network on a final synchronous attractor, showing that the width of transient windows can become extremely long. The relation between the behavior of the system within the transient regime and its initial conditions is examined and described. Our results include both identical and non-identical pendula masses, showing that the distribution of the latter ones is related to the transients. The research performed in this paper underlines possible transient problems occurring during the analysis of the systems when the slow evolution of the dynamics can be misinterpreted as the final behavior.

13.
Eur Phys J Spec Top ; 231(5): 905-919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34925704

RESUMO

India is one of the worst hit regions by the second wave of COVID-19 pandemic and 'Black fungus' epidemic. This paper revisits the Bombay Plague epidemic of India and presents six fractional-order models (FOMs) of the epidemic based on observational data. The models reveal chaotic dispersion and interactive coupling between multiple species of rodents. Suitable controllers based on fuzzy logic concept are designed to stabilise chaos to an infection-free equilibrium as well as to synchronise a chaotic trajectory with a regular non-chaotic one so that the unpredictability dies out. An FOM of COVID-19 is also proposed that displays chaotic propagation similar to the plague models. The index of memory and heredity that characterise FOMs are found to be crucial parameters in understanding the progression of the epidemics, capture the behaviour of transmission more accurately and reveal enriched complex dynamics of periodic to chaotic evolution, which otherwise remain unobserved in the integral models. The theoretical analyses successfully validated by numerical simulations signify that the results of the past Plague epidemic can be a pathway to identify infected regions with the closest scenarios for the present second wave of Covid-19, forecast the course of the outbreak, and adopt necessary control measures to eliminate chaotic transmission of the pandemic.

14.
Phys Rev E ; 104(3-1): 034215, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654152

RESUMO

We report intermittent large-intensity pulses that originate in Zeeman laser due to instabilities in quasiperiodic motion, one route follows torus-doubling to chaos and another goes via quasiperiodic intermittency in response to variation in system parameters. The quasiperiodic breakdown route to chaos via torus-doubling is well known; however, the laser model shows intermittent large-intensity pulses for parameter variation beyond the chaotic regime. During quasiperiodic intermittency, the temporal evolution of the laser shows intermittent chaotic bursting episodes intermediate to the quasiperiodic motion instead of periodic motion as usually seen during the Pomeau-Manneville intermittency. The intermittent bursting appears as occasional large-intensity events. In particular, this quasiperiodic intermittency has not been given much attention so far from the dynamical system perspective, in general. In both cases, the infrequent and recurrent large events show non-Gaussian probability distribution of event height extended beyond a significant threshold with a decaying probability confirming rare occurrence of large-intensity pulses.

15.
Chaos ; 31(10): 103111, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717326

RESUMO

We demonstrate that chimera behavior can be observed in ensembles of phase oscillators with unidirectional coupling. For a small network consisting of only three identical oscillators (cyclic triple), tiny chimera islands arise in the parameter space. They are surrounded by developed chaotic switching behavior caused by a collision of rotating waves propagating in opposite directions. For larger networks, as we show for a hundred oscillators (cyclic century), the islands merge into a single chimera continent, which incorporates the world of chimeras of different configurations. The phenomenon inherits from networks with intermediate ranges of the unidirectional coupling and it diminishes as the coupling range decreases.

16.
Chaos ; 31(8): 081102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470238

RESUMO

Slow and fast dynamics of unsynchronized coupled nonlinear oscillators is hard to extract. In this paper, we use the concept of perpetual points to explain the short duration ordering in the unsynchronized motions of the phase oscillators. We show that the coupled unsynchronized system has ordered slow and fast dynamics when it passes through the perpetual point. Our simulations of single, two, three, and 50 coupled Kuramoto oscillators show the generic nature of perpetual points in the identification of slow and fast oscillations. We also exhibit that short-time synchronization of complex networks can be understood with the help of perpetual motion of the network.

17.
Chaos ; 31(5): 052101, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34240928

RESUMO

The superconducting Josephson junction shows spiking and bursting behaviors, which have similarities with neuronal spiking and bursting. This phenomenon had been observed long ago by some researchers; however, they overlooked the biological similarity of this particular dynamical feature and never attempted to interpret it from the perspective of neuronal dynamics. In recent times, the origin of such a strange property of the superconducting junction has been explained and such neuronal functional behavior has also been observed in superconducting nanowires. The history of this research is briefly reviewed here with illustrations from studies of two junction models and their dynamical interpretation in the sense of biological bursting.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação
18.
Chaos ; 31(6): 061107, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241321

RESUMO

10.1063/5.0056530.4In this paper, we experimentally verify the phenomenon of chaotic synchronization in coupled forced oscillators. The study is focused on the model of three double pendula locally connected via springs. Each of the individual oscillators can behave both periodically and chaotically, which depends on the parameters of the external excitation (the shaker). We investigate the relation between the strength of coupling between the upper pendulum bobs and the precision of their synchronization, showing that the system can achieve practical synchronization, within which the nodes preserve their chaotic character. We determine the influence of the pendula parameters and the strength of coupling on the synchronization precision, measuring the differences between the nodes' motion. The results obtained experimentally are confirmed by numerical simulations. We indicate a possible mechanism causing the desynchronization of the system's smaller elements (lower pendula bobs), which involves their motion around the unstable stationary position and possible transient dynamics. The results presented in this paper may be generalized into typical models of pendula and pendula-like coupled systems, exhibiting chaotic dynamics.

19.
Eur Phys J Spec Top ; 230(7-8): 2021-2033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122740

RESUMO

Understanding extreme events attracts scientists due to substantial impacts. In this work, we study the emergence of extreme events in a fractional system derived from a Liénard-type oscillator. The effect of fractional-order derivative on the extreme events has been investigated for both commensurate and incommensurate fractional orders. Especially, such a system displays multistability and coexistence of multiple extreme events.

20.
Phys Rev E ; 103(5): L050204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134258

RESUMO

We show an amazing complexity of the chimeras in small networks of coupled phase oscillators with inertia. The network behavior is characterized by heteroclinic switching between multiple saddle chimera states and riddling basins of attractions, causing an extreme sensitivity to initial conditions and parameters. Additional uncertainty is induced by the presumable coexistence of stable phase-locked states or other stable chimeras as the switching trajectories can eventually tend to them. The system dynamics becomes hardly predictable, while its complexity represents a challenge in the network sciences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...